Unsupervised Video Object Segmentation using Motion Saliency-Guided Spatio-Temporal Propagation Yuan-Ting Hu¹ Jia-Bin Huang² Alexander G. Schwing¹ ¹ University of Illinois Urbana-Champaign ² Virginia Tech

1. Introduction

Problem

- Segmenting the foreground objects in a video sequence
- No manual annotation is available (unsupervised)

Challenges

• occlusion, deformation, dynamic background

Contributions

- A novel graph construction method (Sec. 3)
- A novel saliency estimation technique (Sec. 4)
- State-of-the-art performance (outperforming deep learning) based methods) in the unsupervised setting (Sec. 5)

4. Motion Saliency Estimation

Boundary Dissimilarity

• Compute the **flow difference** between a pixel *p* and the boundary pixels

Distance to Boundaries • Compute the smallest **barrier distance** between a pixel *p* to the boundary pixels

 v_t : the FG estimate at time t

G: the adjacency matrix of the spatio-temporal graph

Qualitative Results of Our Method

Failure Cases: complex motion

Our result

Spatio-temporal graph G = (V, E)Long range non-local connections

- Search k nearest neighbors within adjacent f frames
- Weights = Visual similarity between superpixels
- Features: HOG + color histogram + (x,y) position

Intra-frame flow-based temporal connections

Superpixels with consistent flow vectors

Frame x_i

Inter-frame edge-aware spatial connections

Connect neighboring superpixels and avoid crossing strong edges

5. Experimental Results

Quantitative Results

DAVIS dataset

		NLC	MSG	KEY	FST	FSG	LMP	ARP	OURS-U
Deep features		-	-	-	-	\checkmark	\checkmark	-	-
]	Mean $\mathcal{M}\uparrow$	0.641	0.543	0.569	0.575	0.716	0.697	0.763	0.776
J	Recall ∅ ↑	0.731	0.636	0.671	0.652	0.877	0.829	0.892	0.886
]	Decay ∅↓	0.086	0.028	0.075	0.044	0.017	0.056	0.036	0.044
]	Mean $\mathcal{M}\uparrow$	0.593	0.525	0.503	0.536	0.658	0.663	0.711	0.750
Ŧ	Recall $\mathscr{O} \uparrow$	0.658	0.613	0.534	0.579	0.790	0.783	0.828	0.869
]	Decay ∅↓	0.086	0.057	0.079	0.065	0.043	0.067	0.073	0.042
<i>I</i>	Mean $\mathcal{M} \downarrow$	0.356	0.250	0.190	0.276	0.286	0.689	0.352	0.243

Segtrack v2 dataset

Sequence	KEY	FST	NLC	FSG	Ours
Average IoU	0.573	0.527	0.672	0.614	0.701

FBMS dataset

	NLC	POR	POS	FST	ARP	OURS
Average IoU	0.445	0.473	0.542	0.555	0.598	0.608

Initialization Quality

Intersection over union (IoU) of the initialization on the DAVIS

	DAVIS					
	NLC	FST	FSG	LMP	Ours	
Training?	-	-	\checkmark	\checkmark	-	
Initial saliency	0.402	0.456	0.602	0.569	0.575	

Ablation Study

	FDiff			
Inter-frame	Intra-frame	Long range		100 (%)
-	-	-	-	57.52
\checkmark	-	-	-	62.75
-	\checkmark	-	-	62.13
-	-	\checkmark	-	72.38
\checkmark	\checkmark	-	-	65.01
\checkmark	-	\checkmark	-	72.70
-	\checkmark	\checkmark	-	74.13
\checkmark	\checkmark	\checkmark	-	74.34
\checkmark	\checkmark	\checkmark	\checkmark	77.56

